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The scattering theory in the two states approximation 
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Institute of Physics, University of Constantine, BP 260, Constantine, Algeria 

Received 22 November 1982, in final form 4 May 1983 

Abstract. The theory of coupled differential equations is applied to the problem of 
scattering in the two states approximation. It will be shown that the methodology can be 
substantially improved by introducing the 'three parameters approach' in the general 
non-resonance case and the 'two parameters approach' in the non-exact resonance case. 
The S matrix can be constructed from these results and satisfies the unitary and symmetry 
requirements as expected. Huck's model and triplet nucleon-nucleon scattering are taken 
as illustrative examples. 

1. Introduction 

Mathematically the multistate problem is formulated by a finite system of coupled 
differential equations: 

[ A +  k :  + UAA]$A = VAG$, A ,  g = 0 , 1 , .  . . n (1) 
P # A  

where as usual A is the Laplace operator; k' ,  U,, are respectively the energy and 
interaction potential corresponding to channel A ; and U,, is the coupling term ( A  Z F ) .  
For an overview of this problem see for example Burke and Seaton (1971) and Hohlfing 
et a1 (1980). For the specific problem of two states approximation in which (1) is 
reduced to a system of two coupled differential equations (Huck 1957) which we shall 
write in the form: 

[A + k ;  + UO"l$" = U,, 41 [ A +  k :  + Ul,I+I = U1,I~O. ( 2 )  

The difficulties which must be overcome are closely related to the magnitude of the 
coupling terms Uol ( r ) ,  Ulo(r). For simplicity we shall assume that ULo= Uol. 

For the weak coupling case (i.e. U,o<< k f ,  UA,) this problem can be dealt with a 
number of excellent methods of approximation such as perturbation, the Born or DWB 

approximation, the iteration as well as the short wave length (JWKB) approaches etc 
which, if properly used, yield the solutions in a relatively simple manner without 
excessive lack of mathematical rigor in their derivation. 

Things become quite different when we come to the strong coupling case (i.e. 
Ulob k : ,  UAA) and the above methods are more difficult to accept from both the 
mathematical and the practical point of view due to the slow rate of convergence or 
divergence of the solutions. 

This problem may however be examined from another point of view based on the 
so-called 'three parameters approach' in which one considers the two proper phase 
shift of the equations together with a mixing parameter (Mott and Massey 1965). 

0305-4470/84/030609 + 10$02.25 @ 1984 The Institute of Physics 609 



610 Cao m a n  Chuan 

However, in order to evaluate these parameters, one has to appeal to the conventional 
variational techniques of calculation, relying mostly on an appropriate choice of the 
trial functions and on the subsequent evaluation of the constants needed in the 
description of these functions. 

Starting from the results obtained previously concerning the theory of coupled 
differential equations, (Cao 1981, 1982; hereafter referred to as I and I1 respectively) 
and from which the present work can be seen as a logical consequence, we present a 
new approach to this problem which, we believe, can make the situation much simpler 
because it allows a direct determination of these parameters. 

We begin by recalling a number of most important aspects of the theory in the 
first paragraph namely the separation of the equations at first order. For the details 
we refer to I1 and to references therein. 

Next will be the case of two coupled equations which will be separated according 
to a scheme to be developed allowing, therefore, a separate determination of the 
proper phase shift. The partial cross-section can then be induced in terms of these 
phase shifts and the mixing parameter. 

The non-resonance case will be discussed and a modified ‘three parameters 
approach’ will be described in 0 3 while the case of non-exact resonance is taken up 
in the next section where it is shown that the role of the mixing parameter becomes 
redundant and only the two proper phase shifts are needed to evaluate the partial 
elastic and inelastic cross-sections. The S matrix for this case is then constructed with 
its unitarity and symmetry property verified. 

In the extreme case of exact resonance, these results yield complete agreement 
with already well known facts justifying, so to speak, the well founded character of 
their derivation. 

Throughout the text, illustrative examples will be discussed serving either as a test 
or as suggestions for further use of the method. 

2. Formulation 

With the usual partial wave expansion, the wavefunction in (2) takes the form 

i=O,1  (3) 
1 

k,r 
$L =--’ (21+1)u,,(r)P,(cos e)  

where the functions u , , ( r )  must satisfy the following equations with appropriate 
asymptotic conditions 

[d2/dr2+ki  - l ( l + l ) r 2 -  Uoo]uol= Vo,u!, 

[dZ/dr2+ k: - l ( l + l ) / r 2 -  Ull]uIl = Ulovol 
(4) 

for r+co  

The phase shift corresponding to channels 0 and 1 may in principle, be evaluated 
by use of the Schwinger type of integral equations but here, however, because of the 
presence of the coupling terms, the exact analytical expression for the wavefunction 
appearing in the integrand is not generally known. 
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For the weak coupling case these functions may indeed always be approximated 
in considering the coupling term as a perturbation but, as this approach certainly 
becomes more and more unsafe for the strong coupling case, one has to introduce the 
so-called ‘three parameters approach’ which involves two proper phase shifts S:,, S:, 
and a mixing parameter x1 whose evaluation presents a difficult problem. We refer to 
Mott and Massey (1965)  where the question is clearly presented, see also Rubinow 
(1955) .  

In this paper, we shall start from the results obtained in the separation of the 
equations to show that simplifications to this problem is, in principle, possible with a 
direct determination of these three parameters. For convenience we first make a 
distinction between three cases which will be considered separately: 

(a) The non-resonance case where ko#  k l ,  Uoo# Ull 
(b) The non-exact resonance case with ko= k , ,  Uoo# UI1 
(c) The exact resonance case ko = k l ,  U,, = U1 

Of these three, the third one is well known already because in ( 2 )  the equations 
may always be separated so that the result obtained for it will merely serve as a test 
for those derived in the first and second cases. 

3. The modified three parameters approach 

We continue to keep the notations used in I and I1 i.e. 

P = d2/dr2; f i = k f - I ( l + l ) / r 2 - U , , ;  B ( r )  = Ulo= UOl. (6) 

It is seen immediately that a complete separation of the equations in ( 4 )  without 
changing the order of the equations is not possible except perhaps for some very special 
cases. However, it is also shown in I1 that a complete separation of the equations at 
some given order of approximation is generally possible for certain classes of coupling 
functions. More precisely, by use of a special transformation V to be defined later, 
the non-diagonal term, after transformation, can be expressed by a serial form: 

where [ 3 means the commutator bracket and 

(see equations (14)-(18) of 11); n, a are adjustable parameters introduced to ensure 
a rapid convergence of the expansion (7). The connection between these quantities is 
found to be 

a* = $ 2 n + ( 4 n +  1)’/32n(2n + l ) ] i $ { [ 2 n + ( 4 n +  1 )* /32n(2n  + l ) j 2 -4n2}1’2 .  (8) 

Therefore, once the value of n is appropriately chosen, (Y is automatically defined and 
the second coefficient in (7) is zero (i.e. A , ( n ,  a )  E O ) .  We are then left with the series 

A,+ f A,[P,r’”]. 
m = 2  
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Moreover, the choice of n may always be made such that the following condition is 
fulfilled 

r<< R = 1 /4a  + yo, (9) 

R being the radius of convergence and, with some restrictions, the neglect of terms 
of second- and higher-order terms in (7 )  is justified at the first order of approximation. 
At the cost of some more complicated algebra, the same procedure may be repeated 
again if a higher order of approximation is needed. 

With these preliminaries, we can now study the scattering problem with two 
separated equations by using the transformation 

V( a, A )  = T (  A )  T (  a )  (10) 

where T has already been defined in TI and the quantity A ,  in the first order of 
approximation considered here, is equal to the quantity Ao given by relation (17) of 
11. It can be seen from (10) that V must have the form 

v = (  -d  d )  c 

with 

c = 2( U + A , ) ,  d = 2( 1 -aAo). 

The separated equations of system (4) are now: 

{d2/dr2+$( k i  + k: + Uno+ U11) - I (  I + l ) / r2+f[(Akz - AU)’ +4U:ol1’*)woi = 0 

{d2/dr2+i (k i+k:  + Uno+ U j ~ ) ~ 1 ( I + 1 ) / ~ 2 ~ ~ [ ( A k ’ ~ A U ) Z + 4 U ~ ~ ] ” 2 } ~ ~ ~ ~ 0  (11) 

where Ak‘=ki-k: amd A U =  Ull-Uoo. 

V-’. In matrix notation 
The functions U(,,, u l l  in (4) may then be recovered by the inverse transformation 

U =  T-’ (a)T-’ (A, )W.  

From (1 1) the proper phase shift may be derived in the usual way by noting that 
a large distance, Uoo, U I I ,  UIo are generally expected to become negligible compared 
to the centrifugal term so that the asymptotic form of (11) will be: 

[d2/dr2+ k;--I(I+l)/r2]w;, = O  

[d2/dr2+ k: - I ( / +  l ) / r * ] ~ ? ~  = O .  

With the phase shift S & ,  S;2[ the asymptotic forms of wil are 

1 
woi=-A:{ sin (k,r-$l.n+S&) 

w l f = - A 7 ,  sin(kjr-$/ .n+6yf) 

ko 

kl 
1 

and the Schwinger form of the uncoupled integral equations determining the proper 
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phase shift will be 

rjf( k,r) w,/(r)Kf ( r )  d r  

in which j r (  k,r) is the spherical Bessel function and 
0 K P ( r )  = $(  Uoo+ UI1) *[(Ak2-  AU)2+4 U:0]1/2 i =  

In terms of 4gf,  S; l ,  one may choose two sets of solutions G:/, GYl corresponding 
to 8: /  and Gi /  G& to 87, together with a mixing parameter xI. Defining 

the S matrix will be S = U exp(2isf) U’ where the transformation matrix U can be 
expressed in terms of 

C O S E  s ine)  
-sin E cos E 

(2)‘/2 tan E = xI. 

The xf parameter can be obtained from the asymptotic conditions imposed on G:, 
G:, after some simple algebra (see for example Mott and Massey 1965). Therefore, 
with 8&, 8:/ given by (15)  and the above mixing parameter, it is then possible to obtain 
the partial elastic QY and inelastic cross-section of the process. 

3.1. Example 

Consider for instance model A of Huck (1957) in which the coupling function B ( r )  
is simply assumed to be a constant C f 0 and the function fi( r )  set equal to the energy 
term k f  (i.e. for the I = O  case). We shall not consider for the moment the Huck’s 
model B which is a system of coupled integro differential equations so that the above 
theorem cannot be applied in a straightforward manner and would require further 
modifications. 

For the model A then and for 0 < r < a, a being the range of the coupling term, 
the quantitity y becomes a constant so that the theorem does apply (i.e. T(A)  =I, I: 
unit matrix) and the separated equations are in Huck’s notation 

(d2/dr2 + m2) wg = 0 

(d*/dr2+p2)wl = O  
where we find 

m2 
=;( k i  + k : )  it[( k :  - ki)2+4C2]1’2. 

P 
Writing the regular solutions as wo = (Y sin mr, w1 = p sin pr, evaluating the original 
functions f0 fl  by the transformation 

and noting finally the following identities 

( l + a ) / ( l - a ) = ( I / C ) ( k ;  -m2) ;  ( 1  - a ) / ( l  + a )  =-( l/C)(k: - p 2 )  
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it can be seen that the exact solution given by Huck is completely recovered here. It 
can also be mentioned that the numerical aspects of this model A has been recently 
discussed from the point of view of variational calculations (Nesbet 1981) where rapid 
convergence to exact results has been obtained. 

Furthermore, it is interesting to note that the model A can even be enlarged to 
the case I # 0, i.e. with 

f i ( r ) =  k j  - I ( l + l ) / r 2 ,  

because for this case the theorem still remains valid. The separated equations are now 

[d2/dr2+m2-I ( I+  l)/r']w,l=O 

[d2/dr'+p2-l(I+1)/r2]wl,  = O  

with the regular solutions wol = air( mr);  w I 1  = p j l ( p r ) ,  j l  being the usual spherical Bessel 
functions. Therefore, with the same procedure, exact solutions can also be obtained 
suggesting that it would perhaps be appropriate to have in the future a comparison 
between these exact solutions with those obtained from the variational approach 
extended to this enlarged case. 

4. The two parameters approach 

Along these lines one may further wonder whether more simplifications are possible 
at least for the second case of non-exact resonance ( k ,  = k l ,  Uno # Ull) .  This is indeed 
possible with the 'two parameters approach' where it will be seen that the role of the 
mixing parameter xI  now becomes redundant. 

In fact, starting from (2) and with the usual Green's function technique, it is easy 
to see that the transformed wavefunctions &, 41 are of the form 

&, = ( kor)-' A&W;,P~(COS e )  

41 = (k1r ) - '  A!,w!,P/(cos e) 

A i  = Ci(21+ 1) exp(ia;), 
with 

i = O ,  1 

CO, CI are arbitrary constants. More explicitly we may write 

4o = Co{exp(ikoz)+[exp(iknr)/r] C (21+ l)[exp(2iSiI) - l]Pl(cos e ) }  
41 = Cl{exp(ikoz) +[exp(ikor)/r] C (21+ l)[exp(2iS;/) - l]P/(cos e)}. 

Remembering (12) and the boundary conditions ( 5 )  for woI, W ~ I  and +bo, +bl it can be 
shown that CO, C1 must satisfy the relations: 

CO = c / (  c2  + d 2 )  = ; ( a  + Ao)/(  1 + a' + A i  + a 2 A i )  

C1 = - d / (  c 2 i  d2) = -;( 1 - uAO)//( 1 + a 2 +  A i  + a2A;) (18) 

and it can be verified that with the inverse transformation Y = V-'4 the asymptotic 
form ( 5 )  is automatically recovered. Therefore by identification we have: 

foe= 1 / (c2+d2)  (21+ l){c2[exp(2iS&)- 1]+d2[exp(2i8pl)- l]}PI(cos 0)  

fol = [ dc/  ( c2  + d2)] 
(19) 

(21 + l){exp(2i6$) - exp( 2iS,bI)}Pl(cos e) 
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which lead straightly to the elastic and inelastic partial cross-sections 

Qpo = [ 7 ~ [ 2 1 + 1 ) / k ~ ( c ~ + d ~ ) ~ ] [ 4 c ~ s i n ~  86, +4d4sin2 8 ! , - 4 d * ~ ~ s i n ~ ( S ~ ~  - 1 3 : ~ )  

+ ~ ~ ' C ~ ( ~ - C O S ~ S ; I  -COS 2S!,)] 

Q:' =[7~(21+ 1)/k;(c2+d2)*]4d2c2 sin2(6,b, -a!,) (20) 

where the phase shift S i , ,  8 ! ,  are given by 

sin 8 :  = - k ,  low r j l ( k i r ) w i ( r ) K P ( r )  dr  

2 1 / 2  . o  KP(r)=4(Voo+U11i[(AU)*+4Uol1 1 2 = 1. 

4.1. Construction of the S matrix 

If in (17) we replace CO, C, respectively by -Cl, CO and after performing the V-l 
transformation Y = V-'4, we obtain the following asymptotic form of Y 

Y O  = f l o  exp(ikor)/r y1 = exp(ikoz) +f l l  exp(ikor!/r (22) 
which enables us to derive the expressions for flo, f l l  

f l o=[dc / ( c2+d2) ]  c (21+ l)[exp(2iS,bl)-exp(2i8~,)]PI(cos e) 
f l l  = [ l / ( c 2 + d 2 ) ]  c (21+1){d2(exp(2i8~l)-l)+c2(exp(2i8~l)-l)}Pl(cos e) 
where the symmetric character between (19) and (23) becomes quite transparent. If 
we now define 

(23) 

and consider the transformation 

we obtain 

Soo = c2  exp(2i8iI) + d 2  exp(2i6,bI) 

Slo = Sol = dc[exp(2i8,b1) -exp(2iS!,)] 

Sll  = d 2  exp(2iS,bl)+c2exp(2i8!,). 

From (19) and (231, (24) it is now easy to verify the following relations 

which merely express the unitarity property of the S matrix. 

4.2. Example 

To illustrate this non-exact resonance case we shall for instance briefly outline the 
triplet nucleon-nucleon coupling case (in fact both the three and the two parameters 
approach are equally valid here but the second one is preferred for simplicity). The 
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two coupled equations will be (see e.g. Newton 1966) where we have adopted the 
notation: 

[d2/dr2+ k2- j ( j+1) / r2-  UC+2[( j -1) / (2j+1)]  U , ] ~ ~ = { 6 [ j ( j + l ) l ’ ’ ~ / ( 2 j + 1 ~ ~ U , u ~  

[d2/dr2 + k2 - ( j +  l)(j+ 2)/ r2 - U, + 2[(j+ 2) / (2j+ 113 U,]UI (25) 

= 6[j(j+ 1)]1’2/(2j+ l)U,uo 

U,, U, are respectively the nuclear interaction corresponding to the central and tensor 
part. For this case the quantity y is no more constant so that the method described 
in I1 must be called for. In first-order approximation and under transformation V 
defined above, the separated equations are 

[d2/dr2+ k2 - [ j ( j+  1) + 1]/r2-( U,+ U,) f D,]w,(r) = 0 

D, = [ 1 / ( 2 j  + 1)]{3[ 2j( j + 1) + 31 U: - 6( 2 j  + 1)2/ r2  U, + ( 2 j  + l)‘/ r4} ”’. 
As it is expected that U, and U, decrease rapidly as r increases, their asymptotic form 
will be 

i=O,1  
(26) 

[d2/dr2 + k 2  - j ( j -  1)/ r2] wo = 0 

[d2/dr2+ k2 - ( j+ l ) ( j+2) / r2 ]wl  = O .  

For the phase shift we have 

sin Sf = -4k r;(k,r)K!(r)w,(r) dr  i=O, 1 I: 
where for notation convenience i( k,r)  now denotes the spherical Bessel functions 

These phase shift can thus be evaluated directly from the uncoupled integral 
equations. Here we have voluntarily ignored the spin orbit term for simplicity but its 
inclusion does not bring any substantial modifications in the general line of approach. 

However, it must be kept in mind that condition (9) must always be satisfied and 
can be discussed in noting that the quantity y ( r )  depends only on the product r2U, 

We must therefore have y<< R, R being the radius of convergence defined in terms 
of the parameter n the choice of it relying of course on the assumed analytical form 
of U,. 

5. The exact resonance case 

It is well known that for the case k, = k l  U,, = UI1, system (4) can always be separated 
regardless of the analytical form of the coupling term Ulo. The transformation needed 
here is XI (defined in I p 1071) and the transformed wavefunction as well as the two 
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proper phase shift are given by 
0 4 = 5 ( + 0 * + 1 )  i = l  

sin 8 ;  = - ko 

K f  = UC@* UOI. 

rjl(  kor)K f ( u )  wi( u )  du (27) lom 
For this special case the two approaches presented above are not needed but we 

rather use this case as a limiting one in order to test the validity of their derivation. 
Note first that in the case of exact resonance the quantity a which has been defined 
as a root of equation ( 5 )  in I I t  will be zero here. We may therefore choose a = 0 so 
that the quantities A. defined in I1 and e, d in (1 8 )  above become 

Ao=-1 c = - 2  d = 2 .  

Replacing them in (20) we then obtain the well known result (with 8; + 8;) 

QY0 =(r/ki)(21+1){2sin2 86+2sin2 8 ;  -sin2(8g-8E)} 

Q?' = ( r / k i ) ( 2 1 + 1 )  sin2(8& -8;).  
(28) 

Likewise if we use the three parameters approach, noting that 8& + 8& S;l, + 8 ;  and 
taking ,yl + 1 (because the equations are separated now), it may be easily checked that 
( 2 8 )  is recovered again. This is an interesting point because it shows that the two 
approaches described above on one hand do yield the same result which on the other 
hand, is in complete agreement with the exact one given for instance in Mott and 
Massey (1965). 

6, Conclusion 

The following remarks will close the present discussion. 
(1) One may wonder whether the procedure used in the two parameters approach 

can also be extended to the case of non-resonance in order to replace the three 
parameters avoiding therefore the tedious calculation of the mixing parameter xl. 
Unfortunately we find that the answer turns out to be negative because the S matrix 
constructed from this method does not lead to the unitarity and symmetry requirements. 

( 2 )  For the case b (non-exact resonance) both the three and two parameters are 
in principle valid but the second one clearly is much simpler. 

(3) The generalisation of this method to the case where the number of coupled 
equations is larger than 2 is possible but with more technical difficulties. For example 
in the case of three coupled equations, it can be shown that extension of the approach 
for the two equations case combined with the step by step diagonalisation technique 
can provide a new representation in which the equations become partially separated 
in such a manner that a direct determination of the phase shift is possible as above 
(to be published). 

(4) The methods are described in the frame of first-order separation approximation. 
Although extension to higher order is possible at the cost of more complications, it 
may be noted that the first order is already flexible enough to be adapted to many 

t Note a small error in the text of I1 where the quantity B in equation (5)  must be replaced by C. 
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cases. This is because the validity condition of this approximation is based on adjustable 
parameters n and a (which in fact are reduced to one parameter because of (8)) to 
be chosen at our convenience. 
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